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1. Introduction
The nonlinear behavior of turbulent, high Reynolds number (Re) fluid flow con-
tinues to defy detailed, theoretical description for all but the simplest of physical
configurations. Laboratory experiments in wind tunnels or water channels, while
providing a controllable environment, have limits on the scales of flow that can be
reproduced. Field observations rapidly become cost prohibitive with increasing in-
strumentation density, cannot be simplified by removing complicating physics (e.g.,
radiative transfer), and lack control over boundary conditions. With the increasing
availability of supercomputing resources, numerical simulations of turbulent flow
have a significant role, not only in probing the behavior of turbulent fluid dynamics,
but also in providing high-resolution weather forecasting at Army-relevant scales
in the atmospheric boundary layer (ABL). The work described here is to further de-
velop vortex filament methods to investigate and simulate the unique complexities
of the ABL.

Most turbulent fluid models in use today are associated with grid-based numerical
methods that solve modified forms of the Navier-Stokes equations. Direct numeri-
cal simulations (DNS) solve the Navier-Stokes equations, including all motions as
small as the dissipation subrange. The computational costs associated with cover-
ing a large domain with high spatial resolution are significant, and generally require
reducing the scale separation between the largest energy containing range and the
dissipation range (i.e., reducing Re). In addition, important atmospheric physics,
such as radiative transfer, may be excluded to maintain computational tractability.

Large Eddy Simulation (LES), as a general strategy, seeks to explicitly simulate
fluid motion for a range of scales from the largest, energy-containing scales just
into the statistically isotropic, inertial subrange. The effects of smaller-scale mo-
tions are modeled via a subgrid-scale (SGS or subfilter-scale, [SFS]) parametriza-
tion. In gridded implementations of LES, the subgrid scale motions are modeled
as an added diffusion several orders of magnitude larger than the molecular diffu-
sion, a practice that is equivalent to decreasing the effective Re. In a similar vein,
the solution of numerical schemes on computational grids adds additional unphys-
ical diffusion, either implicitly by the scheme itself or through required explicit
smoothing to combat numerical instability. Increased, unphysical diffusion can im-
pact the generation and evolution of small-scale vortical structures within the flow
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that should be explicitly resolved. Furthermore, these SGS parametrization gener-
ally preclude the modeling of energy back-scatter, in which small-scale structures
organize into larger structures. The inability to properly simulate these structures
can be especially evident in atmospheric settings with strong stable stratification,
where intermittent, turbulent patches and small vortices produced by even minor
terrain elements are commonly observed. The SGS or SFS parametrization also re-
quires additional treatment near surfaces to account for dissipation and momentum
and heat fluxes near the surface. In atmospheric models, the treatment is usually
based on Monin-Obukhov (M-O) similarity; however, sloping terrain and thermal
stratification violate some of the basic assumptions of this approach. M-O simi-
larity, often with ad hoc corrections, is commonly used despite its shortcomings
because of the lack of alternatives. Quantifying surface fluxes of sloping terrain
under thermal stratification at full Re is an open question in atmospheric science.

Vortex methods are a class of Lagrangian and semi-Lagrangian computational fluids
models. Rather than based on a fixed grid, the methods simulate fluid flow through
mutually interacting and convecting vortex particles. The vortex blob method, which
uses a radially symmetric vorticity distribution for each particle, has been designed
with mainly a view toward simulating flows in which viscous effects are impor-
tant everywhere. To accomplish this, the mean spacing between the vortex particles
must be less than their core radius in order to converge to solutions of the viscous
Navier-Stokes equations. The blob method, as a DNS, may be well suited for lower-
Re situations or for laminar flows at high Re. In addition, Yokota1 accelerated the
performance of an implementation of the vortex blob model using NVIDIA graph-
ics processing units (GPUs) to 74% on over 4000 GPUs on the cluster in Tsubame,
Japan. The core numerical scheme, using the Fast Multipole Method (FMM), was
packaged and released as ExaFMM, an open-source CUDA framework to acceler-
ate FMM calculations. For turbulent engineering flows at high Reynolds numbers,
the techniques used for accommodating vortex stretching in blob methods tend to
be inadequate, leading to instability. In contrast, the vortex filament scheme in-
cludes an efficient and effective means for calculating vortex stretching, which is
an essential requirement for modeling turbulent flows.

A series of technical reports and papers are planned that describe the adaptation of
the vortex filament method to ABL flows, especially related to complex terrain and
urban domains. This first report gives details of the basic method and presents re-
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sults from simple, thermally driven flows. Follow-on reports will cover the method-
ologies for simulating complex geometries and urban environments with the Vortex
Filament Method (VFM), and will provide the details of the FMM as it has been
adapted from the ExaFMM.2

2. Vortex Filament Method
2.1 Overview
The VFM solves the incompressible vorticity equation3 :

Dω

Dt
=
∂ω

∂t
+ (∇ω)u = (∇u)ω + ν∆ω −∇×

(
1

ρ
∇p
)
, (1)

where ω, u, p, and ρ are the vorticity, velocity, pressure, and density, respectively,
The left-hand side is the material derivative of vorticity and the right-hand side are
the vorticity production terms that generate vorticity through stretching, viscosity,
and baroclinic effects. Because it solves the vorticity equations, the VFM it well
suited for flows dominated by vorticity.

The VFM is a Lagrangian method where the computational elements are small,
straight-line vortex tubes that connect end-to-end to form vortex filaments. An ex-
ample filament is shown in Fig. 1. Tube end points provide a natural discretization
of the filament. Each filament has a constant circulation that is determined during
creation through initialization, boundary conditions, or one of the vorticity pro-
duction terms. This circulation induces a velocity field that convects the tube end
points, causing the tubes to stretch or shrink and the filaments to fold. Any tube that
stretches beyond a maximum length, lmax, is split into smaller tubes that satisfy this
constraint. Similarly, if a tube’s length becomes less than a minimum length, lmin,
it is removed and the filament is reconnected. Thus, production of vorticity through
stretching is accounted for intrinsically as the tubes move in response to the flow.
The process of stretching and folding is the mechanism by which energy travels
from large scales to small scales.
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Fig. 1 A filament consisting of small, straight-line vortex tubes connected end-to-end

The VFM is adapted to thermally driven flows by solving the energy equation using
a distribution of energy particles that represent the system’s energy.3 Energy and
vorticity are coupled through the velocity field and baroclinic vorticity generation,
which, when using the Boussinesq approximation, is proportional to the horizontal
temperature gradient. At each time step, temperature gradients are computed from
the energy particle distribution and the associated vorticity is released into the flow
field as filaments.

In general the velocity field is composed of the velocity induced by the filaments,
and depending on the problem, a free stream velocity and a potential flow velocity
for imposing a no penetration boundary condition. For the work presented here,
only velocity induced by the filaments is considered.

2.2 Velocity Field
The velocity field induced by a collection of vortex tubes is governed by the Biot-
Savart law and is computed using the information carried by each tube, namely
circulation, length, position, and orientation. This procedure is described after re-
viewing the concepts of vortex lines, tubes, and filaments.

A vortex line is a curve that is everywhere parallel to the vorticity. Given some
closed curve C, the collection of all vortex lines passing through each point of C
defines the surface of a vortex tube. Circulation Γ of the tube is defined as the
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integral of velocity around the closed curve C and is related to the vorticity by

Γ =

∮
C

u · ds =

∫∫
S

∇× u · n dS =

∫∫
S

ω · n dS, (2)

where vorticity ω = ∇ × u, ds is the differential length along curve C, S is any
surface whose boundary is C, and n is the normal to S. Since ∇ · ω = 0 and ω is
everywhere parallel to the surface of the tube, the divergence theorem implies that
the circulation Γ around any vortex tube is a constant. The theorem of Helmholtz
and Kelvin shows that this is true for all time. A vortex filament is defined by a
limiting process where the cross-sectional area of a tube goes to zero. In this limit,
Γ remains constant as dS → 0 and | ω |→ ∞.

Continuous filaments have discrete counterparts in the VFM. In the VFM a fila-
ment consists of small, straight-line vortex tubes connected end-to-end to form the
filament. A maximum length is imposed on the tubes so that a discrete filament is
allowed to bend and fold as an approximation to a continuous filament. Each dis-
crete filament carries with it a constant circulation, and the velocity induced by it is
computed using a distribution of point sources located at the centers of the tubes.

Using the Helmholtz decomposition theorem, Bernard3 shows how knowledge of
dilatation and vorticity can be used to reconstruct any smoothly varying velocity
field in an unbounded domain. For this work, incompressible flow is assumed so
knowledge of vorticity is sufficient to compute the velocity field. The formula for
this is

u(r, t) =
1

4π

∫ ∫
R3

∫
ω(s, t)× (r− s)

| r− s |3
dV (s). (3)

Integrating over the support of the vorticity in R3 yields the velocity at r at time t.

In the VFM, the support of vorticity is captured by the filaments. Tubes in each
discrete filament represent a small volume of constant vorticity. Assuming r 6= s,
integral Eq. 3 is used to approximate the velocity contribution at r of a vortex tube,
with infinitesimally small volume δτs and centered at s, by

δu(r, t) =
1

4π

ω(s, t)× (r− s)

| r− s |3
δτs. (4)

The point source approximation is obtained in the limit as the tube volume shrinks
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to point s. Because circulation Γ is constant and remains so in the limit, rewriting
Eq. 4 in terms of the tube’s circulation yields the point source formula. Assuming
the tube’s vector length is dl and cross-sectional area is dS, then using the relations
δτs = dS | dl |, ω =| ω | dl/ | dl |, and Γ =| ω | dS = constant, the induced
velocity at r of the source at s is then

δu(r, t) =
Γ

4π

dl× (r− s)

| r− s |3
, (5)

again assuming r 6= s. The influence of the entire filament is the sum of all the tubes
in the filament.

2.3 Velocity Smoothing
A vortex core is characterized by a circular region of finite radius where the vor-
ticity is constant and the core rotates as a rigid body. If the numerical method used
filaments that have a small but finite core radius and used the 3-D volume integrals
to compute the velocities, then the numerical difficulties associated with the singu-
larity in the point source formulas would vanish and the core region would rotate as
expected; however, because of the computational cost of the 3-D volume integrals,
this is not practical. Consequently, the core region is typically modeled by applying
a smoothing function to Eq. 5, see for example Bernard4 and Beale.5 If φσ (|r− s |)
is the smoothing function with parameter σ, then Eq. 5 becomes

δu(r, t) =
Γ

4π

dl× (r− s)

|r− s |3
φσ (|r− s |) . (6)

The smoothing function φσ must be at leastO (|r− s |2) to eliminate the singularity.
It must equal 1 or quickly approach 1 in some neighborhood away from s, and allow
the velocities to go to 0 as |r− s |→ 0.

It is interesting to compute the velocities induced by a single vortex tube, as used in
the VFM but with finite volume, using the 3-D volume integral Eq. 3 and compare
them with to the velocities computed using the smoothed point source formula
Eq. 6. For this comparison, 2 smoothing functions are used: one from Bernard4

given by

φbσ (|r− s |) = 1−

[
1− 3

2

(
|r− s |
σ

)3
]

exp−( |r−s|
σ )

3

(7)
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and a simple piecewise smoothing function given by

φlσ(|r− s |) =

1 if |r− s |≥ σ

|r−s|3
σ3 if |r− s |< σ.

(8)

Each is O (|r− s |3) and satisfies the requirements of the smoothing function.

Consider a single vortex tube as shown in Fig. 2, which is centered at the origin,
aligned with the x-axis, and has core radius rc and length l. Let the vorticity asso-
ciated with this tube be ω = (ωx, 0, 0) and let x0 = (x0, y0, 0)T be any arbitrary
evaluation point in the z = 0 plane. In this plane, the only nonzero induced velocity
is uz(x0) and is given by

uz(x0) =
ωx
4π

rc∫
−rc

l/2∫
−l/2

√
r2c−z2∫

−
√
r2c−z2

(y0 − y)

[(x0 − x)2 + (y0 − y)2 + z2]
3
2

dy dx dz. (9)

The first 2 integrals are integrated exactly and can be found in the Appendix. A
nonsingular integral remains that is numerically integrated for the comparison to
the smoothed point-formula velocities.
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0.001Y Axis
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Z Axis

0
Y Axis
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X Axis
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0

0.0005

0.001

Z Axis

Fig. 2 A vortex tube centered at the origin and aligned with the x-axis with core radius
rc = 0.001 and length l = 0.0025

Figure 3 compares uz computed with the 3-D volume integral to uz from the point
source formula with both smoothing functions φbσ and φlσ using the vortex tube
given in Fig. 2 with circulation = 0.001. The z-velocity is plotted as a function of
r/σ (r =| r − s |) for 2 different approach angles: Fig. 3a approaches the center of
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the tube along the y-axis, and Fig. 3b approaches it at a 45◦ angle from the positive
x−y quadrant, both in the z = 0 plane. As expected, beyond 2 core radii all 3 curves
come together and the velocity approaches zero as r gets small. The peak velocities
near the core radius are considerably different for all 3, the largest being about a
116% difference between φbσ and the volume integral velocities. Both smoothing
functions give the desired behavior but if compared with the 3-D integral results,
the linear smoothing function seems a bit better. One could argue, however, that
each models the desired behavior correctly but is based instead on some effective,
but different, core radius. It is difficult to say if one is actually better than the other
since the core radius is a scheme parameter, and in a sense so is the smoothing
function. The differences may have some effect on the solution, possibly on the
Reynolds number, and uncovering this relationship is one of the long-term goals of
this research.

0 1 2 3 4 5 6
r
σ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

w

3D
ϕb
σ

ϕ l
σ

(a) 90◦

0 1 2 3 4 5 6
r
σ

0.00

0.05

0.10

0.15

0.20

0.25

0.30
w

3D
ϕb
σ

ϕ l
σ

(b) 45◦

Fig. 3 Comparison of uz computed using the 3-D volume integral (black) with the point source
formulas using smoothing functions φb

σ (red) and φl
σ (green). The tube configuration is given

in Fig. 2. Velocity is plotted as a function of y0 for various values of x0. The circulation used
was 0.001.

2.4 Loop Removal
Simulations of complex turbulent flows produce convoluted, spatially intermittent
vortical structures of intricate detail that tend to require a phenomenally large num-
ber of elements for their description through time. The vortex stretching process,
which is accompanied by folding that brings energy to small dissipative scales,
leads to an exponential growth rate in the number of tubes required. Controlling this
growth rate is absolutely essential for any simulation. Bernard4 has demonstrated
that loop removal reduces this to a linear growth rate without apparent harm to the
underlying physics, the justification being that direct elimination of folded vortices
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in the form of loops removes primarily local energy that is likely destined for subse-
quent dissipation at smaller scales. In his conclusions, Bernard4 acknowledges this
loss of energy due to loop removal needs to be further investigated to uncover the
nature of this relationship. Uncovering this relationship is another long-term goal
of this research effort, although not part of this first report. The expectation is that
the code developed will eventually be capable of simulations with 1 to 2 orders of
magnitude more vortex tubes than previous calculations in hopes of uncovering this
relationship, and others associated with turbulent flows. The actual loop removal
algorithm used in this study is described in Algorithm 3 of Section 3.

2.5 Energy
Adapting the VFM to thermally driven flows, such as found in the atmosphere, re-
quires solving the coupled energy and momentum equations. The energy equation,
under the assumptions of constant thermal conductivity and no deformation work,
reduces to a convection-diffusion equation for temperature3 :

∂T

∂t
+ u · ∇T = α∇2T, (10)

where α is the thermal diffusivity.

The Boussinesq approximation, which is appropriate for many atmospheric flows,
simplifies the momentum equation. It ignores variations in density except where it
is multiplied by gravity. Assuming an ideal gas undergoing an isobaric process, a
first-order approximation to density can be written as

ρ ≈ ρ0 +

(
∂ρ

∂T

)
p

∆T = ρ0 (1− αV0 ∆T ) , (11)

where ∆T = T − Tref and αV0 is the isobaric coefficient of thermal expansion

αV = −1

ρ

(
∂ρ

∂T

)
p

=
1

T
=

1

V

(
∂V

∂T

)
p

(12)

evaluated at (ρ0, p0). Ignoring variations in density in all but the gravity term, the
momentum equation

ρ

(
∂u

∂t
+ (∇u)u

)
= ρ g −∇p (13)

9
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becomes
ρ0

(
∂u

∂t
+ (∇u)u

)
= ρ0 (1− αV 0∆T ) g −∇p. (14)

Applying the curl operator yields the vorticity equation:

∂ω

∂t
+ (∇ω)u = (∇u)ω + αV 0 g∇× (∆T k) , (15)

where k is the unit vector in the vertical direction, and g = −g k is the gravity
vector. The baroclinic vorticity generation is now just a function of the horizontal
temperature gradient.

Equations 15 and 10 are the coupled momentum and energy equations that are the
focus of this work. Written in nondimensional they are

∂ω

∂t
+ (∇ω)u = (∇u)ω +Ri ∇× (Θk)

∂Θ

∂t
+ u · ∇T =

1

Pe
∇2Θ,

(16)

where Θ is the nondimensional temperature

Θ =
T − Tref
Th − Tref

, (17)

Pe is the Peclet number

Pe =
LU

α
, (18)

and Ri is the Richardson number

Ri = g αV 0 (Th − Tref )
L

U2
. (19)

Th is the high temperature, Tref is the reference or ambient temperature, L is the
length scale, U is the characteristic velocity, and α is the thermal diffusivity.

The temperature equation is solved using a distribution of energy particles that rep-
resent the internal energy of the system. Since the VFM is a Lagrangian method,
solving the energy equations in this manner is a natural choice. The velocity field
induced by the filaments convects the particles and a probabilistic approach is used
to model the diffusion process.

For a given sensing volume Vs, the average temperature in that volume is a function
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of the number of energy particles in the volume and the energy each carries. To be
more precise

T = Tref +

∑N
i Ei

ρcvVs
, (20)

where N is the number of particles in Vs, Ei is the energy carried by the ith particle,
ρ is the fluid density, cv is the specific heat at constant volume, and Tref is the
ambient temperature. The relationship between the nondimensional temperature Θ

and the energy particle distribution becomes

Θ =
T − Tref
Th − Tref

=

∑N
i Ei

ρcvVs∆T
, (21)

where ∆T = Th − Tref .

Assume that Ei = E0 ∀Ei ∈ Vs, then

Θ =
N E0

ρcvVs∆T
. (22)

In this case, the particle density ρp = N
Vs

that is necessary to raise Θ by 1, or T by
∆Tw, is

ρp =
ρcv∆ Tw
E0

. (23)

Substituting this into the previous equations gives a convenient computational form
for computing temperature of a distribution of particles:

Θ =

∑N
i E

∗
i

ρpVs
, (24)

where E∗i = Ei
E0

.

The resolution of the temperature and temperature gradient computations is a func-
tion of the size of the sensing volume Vs and the number of particles in Vs that
represents a nondimensional temperature rise of 1, that is ρp Vs. These are key pa-
rameters in the numerical algorithm.
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3. Numerical Algorithm
3.1 Overview
Algorithm 1 presents a high-level overview of the vortex filament method. In step
1, the flow domain is initialized as appropriate with vorticity in the form of fila-
ments and temperature in the form of energy particles. At each time step, temper-
ature gradients are computed and the associated vorticity is released into the flow
as filaments. Tube end points and energy particles are then advected using a fourth-
order Runge-Kutta method followed by a Monte Carlo method that diffuses the
energy particles. Tubes exceeding the length constraint are split, and those that do
not conform with the minimum length are removed and the associated filament is
reconnected. Finally, loops are detected and removed.

Algorithm 1 Vortex Filament Method
1: Initialize vorticity and temperature
2: for i = 1→ Nsteps do
3: Compute temperature gradients
4: Release filaments
5: Advect tube end points and energy particles
6: Diffuse energy particles
7: Split tubes that exceed the maximum length constraint
8: Remove tubes that do not conform to the minimum length constraint
9: Detect and remove loops

This algorithm was implemented in C++ using a hybrid Message Passing Interace
(MPI) and OpenMP parallelization strategy. The remainder of this section discusses
the implementation details.

3.2 Data Distribution
Filament operations and velocity calculations have competing requirements relative
to data distribution and parallelization. Having all tubes in a filament on the same
processor is most efficient when searching for and removing loops, but then large
filaments are likely spread over a significant portion of the physical domain. On the
other hand, efficient velocity calculations prefer that the physical domain is decom-
posed into small, contiguous regions with minimal shared boundaries. This likely

12
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leads to large filaments spread across multiple processors. There was no attempt to
resolve these competing interests because a relatively simple algorithm for detect-
ing loops becomes complex if a filament’s tubes are widely distributed; therefore,
filaments are distributed over the processors intact. The resulting communication
cost from this decision is minimized in some situations by optionally redistributing
the filaments based on the distribution of its tubes during the previous velocity cal-
culation: the processor with the most tubes gets the entire filament. The actual data
distribution for the velocity and temperature calculations depends on the octrees
and load balancing schemes, which are discussed next.

3.3 Octree
Velocity, temperature, and temperature gradient calculations all use an octree data
structure so a single template framework was written and used for each. Given
some distributed data set, a global octree is constructed by distributing the data
across multiple MPI processes and building local octrees that share global proper-
ties. The data are distributed by choosing some level of the global octree to be the
load-balance level and, based on workload, assigning the tree nodes at that level,
and consequently the subtrees rooted at those nodes, to the processors. Two load-
balancing algorithms are available for this: one based on distributing the subtrees
in Morton Key order to maintain contiguous data sets on each processor, and an-
other that simply sorts the nodes by the amount of work and distributes the nodes in
round-robin fashion. Once built, octree controller classes manage the local octrees
and the communication between them as required for the specific calculation. Tem-
plate arguments define the octree data types allowing the framework to be generic.

Construction of the global octree is similar for each specific calculation. Aside from
differing data types, some minor differences might include limits to the maximum
tree depth and the load balancing algorithm used. Before building the octree, all
processors must agree on global data bounds, the load-balance level, and a common
tree structure above the load-balance level. (The last requirement is only necessary
when used in the fast multipole method. It makes it convenient for exchanging mul-
tipole expansions.) Data on each processor are sorted according to its Morton key
based on the global data bounds and the lowest possible level of the tree. Each local
data point is assigned to a load-balance node and metadata describing the local data
distribution are exchanged with all processors. The chosen load balancing algorithm
then uses these metadata to decide on an optimal distribution and redistributes the
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data accordingly. Once redistributed, each processor constructs a local octree. This
is summarized in Algorithm 2.

Algorithm 2 Global Octree Construction
Assumption: A nonoptimal data distribution exists

1: Compute local data bounds
2: Exchange local bounds and set global data bounds
3: Set the load-balance level
4: Locally sort and assign data to a load-balance node
5: Exchange load balance meta data
6: Invoke load balance algorithm
7: Redistribute the data based on output from the load balance algorithm
8: Build local octrees

This octree framework is used in the FMM when computing velocities during the
advection step and when computing temperature and temperature gradients as part
of the filament release process.

3.4 Advection
At each time step, tube end points and energy particles are advected using a fourth-
order Runge-Kutta routine that requires 4 velocity calculations per time step. If M
is the number of vortex tubes and N is the number of unique tube end points plus
energy particles, then the velocity calculation is O(MN). This is cost prohibitive
for any reasonable size problem so the FMM6 is used to reduce the velocity com-
putation to O(N).

The intent of this work was not to develop a new FMM since much work had al-
ready been done in this area. The ExaFMM,1 circa September 2016, was chosen
for this and integrated into the VFM. Some difficulties, many associated with non-
uniformly distributed data as found in most problems of interest, were encountered
so a new FMM was written based in part on the ExaFMM. This new FMM uses
the ExaFMM spherical harmonics routines and mimics its traversal algorithms. It
is written as a template C++ class and uses the octree framework discussed pre-
viously. Template arguments define the kernel type, for example, Biot-Savart and
Laplace, and the associated data types. It is a list-based dual tree approach where
separate octrees are constructed for the sources and the targets. The dual tree ap-
proach is well suited for the VFM because the depth of the source tree is limited by
the smoothing function but not so for the target tree. When N � M , the hierarchy
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of the target tree can be exploited when translating the local expansions to the bot-
tom of the target octree, which in general is at a much lower depth. The details of
this FMM will be documented in a separate technical report.

3.5 Temperature Gradient
The temperature and temperature gradient calculations start by constructing an oc-
tree that captures all the energy particles and whose depth is limited by the size
of the input sensing volume. Figure 4a shows an example of a spherical cloud of
energy particles enclosed by the sensing volume octree. Global bounds of the oc-
tree are chosen so that node volumes at the lowest level of the tree are equal to the
desired sensing volume. An input parameter, ntinf , defines a minimum number of
energy particles above which the temperature is considered greater than zero. This
controls the growth of the tree such that the number of energy particles in nodes at
the sensing volume level will always contain greater than or equal to this amount
or will have at least one sibling that does. Once constructed, it is a simple matter to
sum the energy of all the particles in a sensing volume to compute the temperature.

(a) Sensing volume octree (b) Least squares domain (c) Filament release

Fig. 4 Temperature and baroclinic filament release calculations utilize an octree with leaf nodes
at the sensing volume (4a), a least squares curve fit for temperature using the node (red) and
its nearest neighbors (4b), and a filament released inside a sensing volume (or release volume)
(4c).

Temperature gradients are computed at the center of each sensing volume using the
gradient of a full second-order polynomial approximation of temperature. Figure 4b
shows an example where the red node, surrounded by its nearest neighbors, is where
the temperature gradient is to be computed. The coefficients of the polynomial are
generated using a least squares curve fit with data from the node and its nearest
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neighbors. If one of its 26 near neighbors does not exist in the octree it is because
the nondimensional temperature there is 0.

3.6 Filament Release
Once temperature gradients are computed the associated vorticity is know and can
be released into the flow as filaments. This can be done by constructing filaments
inside the sensing volume itself, or by partitioning the domain into equivalent vol-
umes in some other way and releasing from there. It was found that when a problem,
such as a spherical thermal bubble, has some symmetry not aligned with axes, using
sensing volumes that are aligned with the axes to construct the filaments results in
solutions that show some grid dependency. This can be mitigated by either reducing
the sensing volume further, which can significantly increase the number of energy
particles needed, or by constructing release volumes that reflect the symmetry of the
problem. Temperature gradients can be computed at the center of any chosen release
volume using the appropriate polynomial approximation for temperature. Release
volumes that have radial symmetry were used for the spherical bubble calculations
presented in the Section 4.

Filaments are constructed by intersecting the release volumes with a line that passes
through the center and is parallel to the vorticity vector: see, for example, Fig. 4c.
The magnitude of the vorticity, the length of intersecting line and the release volume
determine the circulation of the new filament. If the new filament is longer than the
maximum tube length it is subdivided. For release volumes that are not cubes, the
same procedure is applied to an equivalent cube centered over the release volume.

3.7 Loop Removal
Loop removal models small-scale dissipation while limiting the growth of the num-
ber of tubes; thus, it is an essential part of the method. The tube end points of a
filament are used for loop detection. When the distance between any 2 of these
points is less than the distance criterion di, that portion of the filament is considered
a loop, the tubes between them are removed, and the filament is reconnected. The
distance criterion di is based on the total length l of the potential loop and an input
parameter α, and is computed by

di =
α

1− α
l, 0 < α < 1. (25)
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For small α, di is approximately αl. A typical value is 0.0025. An additional pa-
rameter, ls, controls detection of small loops. If l < ls then di = l/2. Typically, ls is
very small if used at all. When all loops are detected and removed, if the number of
tubes remaining is less than a given percentage of the original number of tubes the
entire filament is removed. This is controlled by input parameter β.

The loop removal algorithm as described is shown in Algorithm 3. The input pa-
rameters are no, na, ls, α, and β, where no is the minimum number of tubes the
filament must have before being checked for loops and na is the minimum number
of tubes that any loop must possess. The other input parameters are as described
previously.

Algorithm 3 Loop Removal
Input: na, ls, α, β

1: for each filament do
2: if Number of tubes ≥ n0 then
3: ne = number of filament end points; i = 0
4: while i < ne − na do
5: j = i+ na; l =

∑j−2
n=i ln; found = false

6: while not found and j < ne do
7: l = l + lj−1; d = |xj − xi|
8: if l < ls then
9: di = l

2

10: else
11: di = α

1−α l

12: if d < di then
13: flag tube end points between i and j for removal
14: if i == 0 or i− 1 was marked for removal then
15: mark i for removal
16: if j == ne − 1 or i was marked for removal then
17: mark j for removal
18: i = j, found = true
19: else
20: j = j + 1

21: if found = false then
22: i = i+ 1

23: if fraction of end points marked for removal ≥ β then
24: remove the entire filament
25: else
26: remove end points marked for removal and reconnect
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4. Results
VFM simulations of the 7 ellipsoidal bubbles reported in Shapiro7 were performed.
The initial temperature distribution in each bubble was defined by Eqs. 3.4 through
3.6 of Shapiro7 and are repeated here:

T = B

[
L2
z

L2
x

(
x2

L2
x

− 1

)
+
L2
z

L2
y

(
y2

L2
y

− 1

)
+

(
z2

L2
z

− 1

)]
exp−χ, (26)

where Lx, Ly and Lz are the semi-principal axes of the ellipsoid,

χ =
1

2

[
x2

L2
x

+
y2

L2
y

+
z2

L2
z

]
, (27)

and
B = − ∆Tb

1 + L2
z/L

2
x + L2

z/L
2
y

. (28)

Table 1 defines the semi-principal axes and ∆Tb; and the maximum temperature
rise for each case.

Each problem was nondimensionalized using a reference length Lref defined by
Lref = max (Lx, Ly, Lz) and a reference time tref given by the time it would take
for a bubble at constant temperature to rise a distance Lref if the acceleration due
to buoyancy remained constant. The acceleration8 used was

ab = −gmb −md

mb +md

= g
∆Tb

2T∞ + ∆Tb
, (29)

where mb is the mass of the bubble and md is mass of the displaced fluid. The ref-
erence time is then tref =

√
2Lref/ab, the reference velocity is Uref = Lref/tref ,

and the reference temperature, Tref , is 300K for all cases. The Richardson number
written in terms of Tref and ∆Tb is

Ri = 2
g

ab

∆Tb
Tref

= 4 +
2 ∆Tb
Tref

.

Table 1 lists the reference quantities and Richardson number for each case.
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Table 1 Parameters and reference quantities for the Shapiro-Kanak bubbles. Tref = 300 K
for all cases

Case Lx (m) Ly (m) Lz (m) ∆Tb (K) Lref (m) tref (s) Uref (m/s) Ri

CNTRL 64.24 64.24 64.24 1.5 64.24 72.5 0.886 4.01
EXPT1 26.84 64.24 64.24 1.5 64.24 72.5 0.886 4.01
EXPT2 20.84 49.88 64.24 1.5 64.24 72.5 0.886 4.01
EXPT3 20.84 64.24 49.88 1.5 64.24 72.5 0.886 4.01
EXPT4 26.84 64.24 26.84 1.5 64.24 72.5 0.886 4.01
EXPT5 20.84 49.88 19.23 1.5 49.88 63.89 0.781 4.01
EXPT6 20.84 49.88 19.23 3.0 49.88 45.23 1.103 4.02

VFM algorithm parameters used are given in Tables 2 through 4. Uniform energy
particles were used for all cases; that is, the energy contained in each particle is
the same. The parameters in Table 3 imply that 8,192 particles are required to raise
the nondimensional temperature in a sensing volume by 1. For all cases considered,
convection dominated and diffusion was turned off.

The thermal bubbles were initialized with a distribution of energy particles that
represented the temperature given by Eq. 26. This was done by covering the bubble
with a net of cubes, each of whose volume was 1

512
of the sensing volume. The

temperature in each cube was considered constant and the appropriated number of
energy particles was deposited randomly into the cube. Figure 5 shows 3 views of
the initial cloud of particles and Table 5 gives the total number of energy particles
needed for each case.

Each case was run to an actual time of 216 s using a constant nondimensional time
step dt= 0.033103. The reference times for cases EXPT5 and EXPT6 implied that
102 and 144 iterations, respectively, were needed to reach the simulation time. The
other cases required 90 iterations. As can be seen from Table 1, doubling ∆Tb had
a minimal effect on the Richardson number and a large effect on the reference time.
Because of this, EXPT5 and EXPT6 are essentially the same case run to different
nondimensional times. Figure 6 shows how the initial cloud of energy particles
evolved after 216 s.
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Table 2 Vortex tube parameters

Parameter Value

ρc 0.01
lmax 0.025
lmin 0.0001

Table 3 Energy particle parameters

Parameter Value

ρp 16× 106

Vs 512× 10−6

ntinf 8

Table 4 Loop removal parameters

Parameter Value

n0 5
na 5
ls 0.0
α 0.005
β 0.8

Table 5 Number of energy particles used

Case Number

CNTRL 89,322,424
EXPT1 48,777,768
EXPT2 31,832,360
EXPT3 31,832,360
EXPT4 18,383,048
EXPT5 17,212,408
EXPT6 17,212,408
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CNTRL

EXPT1

EXPT2

EXPT3

EXPT4

EXPT5

EXPT6

(a) (b) (c)

Fig. 5 Initial cloud of energy particles as viewed in the (a) −x, (b) +y, and (c) −z directions
for the 1 spherical and 6 ellipsoidal thermal bubbles
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CNTRL

EXPT1

EXPT2

EXPT3

EXPT4

EXPT5

EXPT6

(a) (b) (c)

Fig. 6 Same as Fig. 5 but at t = 216 s
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Figures 7 through 13 show the distribution of vortex filaments and tubes for each
case at the final time. In Figs. 8 through 13, subfigure (a) shows the filaments as
viewed in the −x direction and subfigure (b) shows them as viewed in the +y di-
rection. The filaments are color coded with circulation using the log color scale
shown in Fig. 7b. The strong filaments are predominately at the top of each bubble
with the strongest ones in the interior, which cannot be seen in these figures. Sub-
figures (c) and (d) of Figs. 7 through 13 show how circulation is distributed with
respect to the filaments and tubes, respectively, and (e) shows the distribution of the
number of tubes per filament.
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Fig. 7 CNTRL filaments at t = 216 s. (a) 113,085,992 tubes colored by circulation and viewed
in the −x direction. (b) Log scale color map for the circulation. (c), (d), and (e) Distributions
of circulation and tubes per filament.
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(e)

Fig. 8 EXPT1 filaments at t = 216 s. (a) 334,298,530 tubes colored by circulation and viewed in
the −x direction. (b) Filaments as viewed in the +y direction. (c), (d), and (e) Distributions of
circulation and tubes per filament.
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(e)

Fig. 9 Similar to Fig. 8 for EXPT2 with 364,379,492 tubes
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Fig. 10 Similar to Fig. 8 for EXPT3 with 323,079,119 tubes
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(e)

Fig. 11 Similar to Fig. 8 for EXPT4 with 77,288,312 tubes
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(e)

Fig. 12 Similar to Fig. 8 for EXPT5 with 107,678,960 tubes
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Fig. 13 Similar to Fig. 8 for EXPT6 with 533,352,010 tubes

The lower limit in the circulation distribution charts reflect the limit imposed on
weak filaments. Any filament generated with circulation less than 6.0 × 10−5 was
discarded. Ad hoc calculations indicated that this cutoff level resulted in very few
discarded filaments with little effect on the solution; however, this needs to be ex-
amined further. The drop off at the high end is a measure of the extent of the largest
temperature gradients encountered. The maximum circulation for any case is a func-
tion of the temperature gradient, release volume, and time step. The release volumes
were on the order of the sensing volume and were similar across all cases, as was
the time step. The drop off in the distribution of the number of tubes per filament,
subfigure (e), is due to loop removal. Larger filaments have a higher probability of
forming loops.

Figure 14 shows how the number of filaments, tubes and tubes removed from loops
increased during the simulations. At the final time step, tube growth remained ex-
ponential. More work needs to be done to limit this growth through aggressive loop
removal, merging of tubes, or other methods, so that these calculations can be ad-
vanced to a fully turbulent state with more reasonable tube growth.
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(c) loop removal

Fig. 14 VFM calculation statistics vs. iteration number: (a) is the number of filaments, (b) is
the number of vortex tubes, and (c) is the number of tubes removed from loops
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To compare the maximum vertical velocity and vorticity predicted by the VFM to
the same presented in Figs. 5 and 7 in Shapiro,7 a uniform 3-D grid of size 121 ×
121 × 201 with an nondimensional grid size of 0.05 was constructed around each
bubble. The velocity and vorticity were then computed at each grid point and the
maximum of the vertical component of each was found. The comparisons are shown
in Fig. 15 in dimensional quantities. The black vertical axis on the left is the velocity
scale and the red vertical axis on the right is the vorticity scale. The curves are
similarly color coded. The solid lines are VFM simulations and the dashed lines are
numbers picked off Figs. 5 and 7 in Shapiro.7 The velocity compares well with the
published results with excellent agreement on the spherical bubble. At early times,
the maximum vertical vorticity is always larger than Shapiro.7 This is most likely
due to the nondiffusive nature of the VFM method that allows tubes to reorient even
with minimal perturbation as is the case for early times. At later times, these curves
tend to come closer together.

Figure 16 shows the height reached by the bubbles as a function of time. The curves
with "_sk" appended to their labels were generated by estimating the height from
Fig. 2 of Shapiro7 for the CNTRL case and Fig. 3 for the EXPT1 case. Excellent
agreement with these 2 cases is shown.

Figure 17 shows the nondimensional temperature difference in the at x = 0 plane
for the CNTRL bubble at nonscaled times t = 96 through t = 216 in increments of
24 s. Figures 18 through 23 show the same for the nonspherical bubbles in addition
to the temperature difference in the y = 0 plane. Figures 17 and 18 can be compared
with Figs. 2 and 3 in Shaprio.7
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Fig. 15 Maximum vertical velocity and vorticity.
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Fig. 16 Height of the thermal bubbles vs. time
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Fig. 17 CNTRL bubble temperature rise in the x= 0 plane. See Fig. 24 for the color scale.
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Fig. 18 EXPT1 bubble temperature rise in the x=0 plane, (a)–(f), and the y=0 plane, (g)–(l).
See Fig. 24 for the color scale.
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Fig. 19 EXPT2 bubble temperature rise in the x=0 plane, (a)–(f), and the y=0 plane, (g)–(l).
See Fig. 24 for the color scale.
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Fig. 20 EXPT3 bubble temperature rise in the x=0 plane, (a)–(f), and the y=0 plane, (g)–(l).
See Fig. 24 for the color scale.
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Fig. 21 EXPT4 bubble temperature rise in the x=0 plane, (a)–(f), and the y=0 plane, (g)–(l).
See Fig. 24 for the color scale.
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Fig. 22 EXPT5 bubble temperature rise in the x=0 plane, (a)–(f), and the y=0 plane, (g)–(l).
See Fig. 24 for the color scale.
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Fig. 23 EXPT6 bubble temperature rise in the x=0 plane, (a)–(f), and the y=0 plane, (g)–(l).
See Fig. 24 for the color scale.
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5. Conclusions and Path Forward
The VFM offers a methodology for solving the heretofore intractable problem of
capturing the physics of nondiffusive energy transfer and vortex dynamics in high
Re turbulent flows. Couple with the energy equation, the results presented here
show that the method is also able to capture the correct physics of thermally driven
flows. The vertical velocity, structural form, and temperature distribution of the
thermal bubbles match published calculations. This new method has the potential
for accurately predicting turbulent atmospheric flow environments in ways not seen
before and provide the means for better understanding such flows.

A separate validation study of the method, not reported here, focused on simulations
of isotropic turbulence in a periodic box. Results show that the method produces
isotropic turbulence, for example, 2-point velocity correlations obey isotropic laws.
These results will be published in a separate report.

The capability to simulate heated surfaces has been added, and future work will
include simulations of thermally driven flows initialized from vertical and horizon-
tal heated surfaces. The latter will provide results that can be compared with data
collected at Meteorological Sensor Array at the White Sands Missile Range in New
Mexico. Additional planned capabilities include adding viscous surfaces for simu-
lations with complex geometries, 2-way coupled particles for simulations with dust
and chemical agents, and the addition of a 3-D radiative transfer scheme.

Further research is needed to contain the growth of vortex tubes through refinement
of the loop removal process or other means such as combining tubes. The effects
on the underlying physics when energy is lost due to loop removal needs further
study.
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Appendix. Integrals
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The exact integration of the first 2 integrals for uz in Eq. 9 are

uz(x0) =
ωx
2π

r∫
−r

l/2∫
−l/2

√
r2−z2∫
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√
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 1√
(x0− x)2 +

(
y0−

√
r2 − z2

)2
+ z2

− 1√
(x0− x)2 +

(
y0 +

√
r2 − z2

)2
+ z2

 dx dz,
=
ωx
2π

r∫
−r

log


√
r2 + ( l

2
− x0)2 + y20 − 2y0

√
r2 − z2 + l

2
− x0√

r2 + ( l
2

+ x0)2 + y20 − 2y0
√
r2 − z2 − l

2
− x0


− log


√
r2 + ( l

2
− x0)2 + y20 + 2y0

√
r2 − z2 + l

2
− x0√

r2 + ( l
2

+ x0)2 + y20 + 2y0
√
r2 − z2 − l

2
− x0

 dz.
(A-1)
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List of Symbols, Abbreviations, and Acronyms

3-D 3-dimensional

ABL atmospheric boundary layer

DNS direct numerical simulation

FMM Fast Multipole Method

GPUs graphic processing units

LES Large Eddy Simulation

M-O Monin-Obukhov

MPI Message Passing Interface

Re Reynolds number

SFS subfilter scale

SGS subgrid scale

VFM Vortex Filament Method
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